Affine Deligne–Lusztig varieties at infinite level

نویسندگان

چکیده

We initiate the study of affine Deligne–Lusztig varieties with arbitrarily deep level structure for general reductive groups over local fields. prove that $${{\,\mathrm{GL}\,}}_n$$ and its inner forms, Lusztig’s semi-infinite construction is isomorphic to an variety at infinite level. their homology give geometric realizations Langlands Jacquet–Langlands correspondences in setting Weil parameter induced from a character unramified field extension. In particular, we resolve 1979 conjecture this minimal admissible characters.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine Deligne–lusztig Varieties at Infinite Level (preliminary Version)

Part 1. Two analogues of Deligne–Lusztig varieties for p-adic groups 5 2. Affine Deligne–Lusztig varieties at infinite level 5 2.1. Preliminaries 5 2.2. Deligne–Lusztig sets/varieties 7 2.3. Affine Deligne–Lusztig varieties and covers 8 2.4. Scheme structure 9 3. Case G = GLn, b basic, w Coxeter 12 3.1. Notation 12 3.2. Basic σ-conjucacy classes. Isocrystals 12 3.3. The admissible subset of Vb ...

متن کامل

Affine Deligne-lusztig Varieties in Affine Flag Varieties

This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split group. Among other things, it proves emptiness for certain of these varieties, relates some of them to those for Levi subgroups, extends previous conjectures concerning their dimensions, and generalizes the superset method.

متن کامل

Dimensions of Affine Deligne-Lusztig Varieties in Affine Flag Varieties

Affine Deligne-Lusztig varieties are analogs of DeligneLusztig varieties in the context of an affine root system. We prove a conjecture stated in the paper [5] by Haines, Kottwitz, Reuman, and the first named author, about the question which affine DeligneLusztig varieties (for a split group and a basic σ-conjugacy class) in the Iwahori case are non-empty. If the underlying algebraic group is a...

متن کامل

Stable Reductive Varieties I: Affine Varieties

0. Introduction 1 1. Main definitions and results 3 2. General criteria 6 2.1. Seminormality and connectedness of isotropy groups 6 2.2. Finiteness of number of orbits and group–like condition 9 3. Orbits in stable reductive varieties 11 3.1. Isotropy groups 11 3.2. Algebras of regular functions 14 4. Reductive varieties 18 4.1. Classification 18 4.2. Associated stable toric varieties 20 5. Sta...

متن کامل

Affine Algebraic Varieties

In this paper, we give new criteria for affineness of a variety defined over C. Our main result is that an irreducible algebraic variety Y (may be singular) of dimension d (d ≥ 1) defined over C is an affine variety if and only if Y contains no complete curves, Hi(Y,OY ) = 0 for all i > 0 and the boundary X − Y is support of a big divisor, where X is a projective variety containing Y . We const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-020-02092-4